Allogene:
 Leading the Next Revolution in Cell Therapy

March 2019

Forward-Looking Statements

To the extent statements contained in this Presentation are not descriptions of historical facts regarding Allogene Therapeutics, Inc. ("Allogene," "we," "us," or "our"), they are forward-looking statements reflecting management's current beliefs and expectations. Forward-looking statements are subject to known and unknown risks, uncertainties, and other factors that may cause our or our industry's actual results, levels or activity, performance, or achievements to be materially different from those anticipated by such statements. You can identify forward-looking statements by words such as "anticipate," "believe," "could," "estimate," "expect," "intend," "may," "plan," "potential," "predict," "project," "should," "will," "would" or the negative of those terms, and similar expressions that convey uncertainty of future events or outcomes. Forward-looking statements contained in this Presentation include, but are not limited to, statements regarding: (i) the success and timing of our product development activities and initiating clinical trials, (ii) the success and timing of our collaboration partner's ongoing and planned clinical trials, (iii) our ability to obtain and maintain regulatory approval of any of our product candidates, (iv) our plans to research, discover and develop additional product candidates, including by leveraging next generation technologies and expanding into solid tumor indications, (v) our ability to establish manufacturing capabilities, and our and our collaboration partner's ability to manufacture our product candidates and scale production, and (vi) our ability to meet the milestones set forth herein. Various factors may cause differences between Allogene's expectations and actual results as discussed in greater detail in Allogene's filings with the Securities and Exchange Commission (SEC), including without limitation in its Form 10-K for the year ended December 31, 2018 filed with the SEC.

Except as required by law, we undertake no obligation to publicly update any forward-looking statements, whether as a result of new information, future events or otherwise. This Presentation shall not constitute an offer to sell or the solicitation of an offer to buy securities, nor shall there be any sale of securities in any state or jurisdiction in which such offer, solicitation or sale would be unlawful prior to registration or qualification under the securities laws of any such state or jurisdiction.

Autologous CAR T: Learning from the First Revolution

Allogeneic CAR T Therapy: The Next Potential Breakthrough

Allogene: Leading the Future of AlloCAR $\top^{\text {TM }}$ Cell Therapy

Allogene Today: Creating the Future of AlloCAR $T^{T M}$ Cell Therapy

The Allogene Leadership Team

$\left.\begin{array}{lc}\text { Arie Belldegrun, M.D., FACS } & \text { Kite } \\ \text { Executive Chairman \& Co-Founder }\end{array}\right)$

Barbra Sasu, Ph.D. Chief Scientific Officer	Pfizer AMGEN
Susie Jun, M.D., Ph.D. Chief Development Officer	abbvie
	AMGEN \/J GILEAD
Veer Bhavnagri General Counsel	Kite Cooley
	SULIVAN \& Cromwell llp
David Tillett, Ph.D. Head of Quality	AMGEN

Allogene's Strategy: Focused Development of AlloCAR $T^{\text {TM }}$ Cell Therapy

DIFFERENTIATION
Build state-of-the-art gene engineering and cell manufacturing capabilities
(Sustainability)

NEAR-TERM
Capitalize
on validated target
and first-mover
advantage in anti-
CD19 AlloCAR T
candidates
(Leadership)

FAST-FOLLOW
Expand leadership
position within
hematologic
indications including
Multiple Myeloma
and AML
(Advantage)

LONG-TERM

Leverage next generation technologies and expand into solid tumor indications with high unmet need
(Innovation)

Current Manufacturing Capabilities \& Planned Expansion

Current South San Francisco Facility

- Manufacturing process development \& optimization
- Analytic methods for in-process characterization \& improvement
- Quality Assurance and Quality Control support

Planned East Bay Area Facility (Newark, CA)

Current CMO Support

- Dedicated purpose built GMP suite
- Clinical supply manufacturing, formulation \& release

AlloCAR $T^{\text {TM }}$ Cells Will Be Available On Demand

Allogene

Deep AlloCAR $T^{\text {TM }}$ Pipeline Targeting Vast Array of Tumor Types

CATEGORY	PROGRAM	PRE-CLINICAL	PHASE 1	PHASE 2/31
Hematological Malignancies	UCART19 (CD19/ALL) (Servier Sponsored) ${ }^{2}$			
	ALLO-501 (CD19/NHL) ${ }^{2}$			
	ALLO-715 (BCMA/MM)			
	ALLO-819 (FLT3/AML)			
	CD70 (NHL)			
Solid Tumors	CD70 (RCC)			
	DLL3 (SCLC)			
Lymphodepletion Agent ${ }^{3}$	ALLO-647 (Anti-CD52 mAb)			

[^0]
UCART19: The First AlloCAR T TM in Clinical Development

Controlling Graft-vs-Host Disease (GvHD) Reaction

GvHD with TCR
present

No GvHD with TCR
knocked out

- GvHD: a potentially serious complication where allogeneic cells ("the graft") attack the patient's healthy cells ("the host")
- Risk of GvHD can be reduced by inactivating T cell receptors (TCR)
- Mild cases of Grade 1 acute GvHD reactions limited to skin observed with UCART19 in ongoing clinical studies (ASH 2018)

Creating a Window of Persistence

Allogeneic CAR T cells lacking CD52 will not be eliminated by ALLO-647 (anti-CD52 mAb)

Anti-CD52 mAb (ALLO-647) intended to reduce the likelihood of the patient's immune system from rejecting AlloCAR $T^{\text {TM }}$ cells

BCMA CAR T cells knocked out for CD52 are resistant to ALLO-647 in a complement-dependent cytotoxicity assay

ALLO-501 ALPHA Study Targeting CD19 in R/R NHL

ALLO-501 and ALLO-647 Phase 1 Study Overview (Allogene-Sponsored)

- Eligible patients with relapsed/refractory large B-cell lymphoma or follicular lymphoma and:
- Failed at least two prior lines of therapy
- No prior anti-CD19 therapy
- Absence of pre-existing donor (product)-specific anti-HLA antibodies
- Objectives:
- Primary: Safety, tolerability and recommended P2 doses for ALLO-501 and ALLO-647
- Secondary: Anti-tumor activity, ALLO-501 cellular kinetics, ALLO-647 PK, immunogenicity and host lymphocyte reconstitution
- Dose-escalation of ALLO-501: 40 to 360×10^{6} CAR+ cells in $3+3$ design
- Up to 24 patients

Treatment:

- Starting cell dose: $40 \times 10^{6} \mathrm{CAR}+$ cells

Lymphodepletion:

- ALLO-647: $13 \mathrm{mg} / \mathrm{d} \times 3$ days
- Fludarabine: $30 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{d} \times 3$ days
- Cyclophosphamide: $300 \mathrm{mg} / \mathrm{m}^{2} / \mathrm{d} \times 3$ days

UCART19 PALL \& CALM Studies Targeting CD19 R/R ALL

UCART19 ALL Pediatric (PALL) and Adults (CALM) Study Overview Servier Sponsored

- Eligible patients with CD19+ B-ALL and:
- Morphological or MRD+
- Failed previous treatment options
- Objectives:
- Primary: Safety and tolerability
- Secondary: Anti-leukemic activity
- Exploratory: UCART19 expansion and persistence
- PALL ongoing:
$\checkmark \mathrm{n}=7$ treated with 2×10^{7} total cells
- CALM dose escalation ongoing:
$\checkmark n=6$ treated at DL1 (6×10^{6} total cells)
$\checkmark \mathrm{n}=6$ treated at DL2 (6 to 8×10^{7} total cells)
\rightarrow DL3 (1.8 to 2.4×10^{8} total cells) ongoing

- Fludarabine: $\quad 90 \mathrm{mg} / \mathrm{m}^{2}$ for adults; $150 \mathrm{mg} / \mathrm{m}^{2}$ for pediatrics
- Cyclophosphamide: $1500 \mathrm{mg} / \mathrm{m}^{2}$ for adults; $120 \mathrm{mg} / \mathrm{kg}$ for pediatrics
- Anti-CD52 mAb: $1 \mathrm{mg} / \mathrm{kg}$ both adults and pediatrics

UCART19: Manageable AE Profile in Phase 1 Studies

N=21	$\begin{gathered} \mathrm{G} 1 \\ \mathrm{n}(\%) \end{gathered}$	$\begin{gathered} \mathrm{G} 2 \\ \mathrm{n}(\%) \end{gathered}$	$\begin{gathered} \text { G3 } \\ \mathrm{n}(\%) \end{gathered}$	$\begin{gathered} \text { G4 } \\ \mathrm{n}(\%) \end{gathered}$	$\begin{gathered} \mathrm{G} 5 \\ \mathrm{n}(\%) \end{gathered}$	All grades n (\%)
AEs related to UCART19						
Cytokine release syndrome	4 (19.0)	12 (57.1)	2 (9.5)	1* (4.8)	-	19 (90.5)
Neurotoxicity events	7 (33.3)	1 (4.8)	-	-	-	8 (38.1)
Acute skin graft-versus-host disease **	2 (9.5)	-	-	-	-	2 (9.5)
AEs related to lymphodepletion and/or UCART19						
Viral infections †	1 (4.8)	2 (9.5)	4 (19.0)	1 (4.8)	-	8 (38.1)
Prolonged cytopenia***	-	-	-	$6 \ddagger(28.5)$	-	6 (28.5)
Neutropenic sepsis				1 (4.8)	1* (4.8)	2 (9.5)
Febrile neutropenia/ septic shock					1 (4.8)	1 (4.8)
Pulmonary hemorrhage					$1 \ddagger(4.8)$	1 (4.8)

ASH 2018

n : number of patients with at least one AE by worst grade

* 1 DLT at DL1 related to UCART19: G4 CRS associated with G5 neutropenic sepsis (death at D15 post-infusion)
** GvHD confirmed by biopsy in 1 out of 2 cases
*** Persistent Grade 4 neutropenia and/or thombocytopenia beyond Day 42 post UCART19 infusion, except if $>5 \%$ bone marrow blasts
$\ddagger 1$ DLT at DL2 related both to UCART19 and LD: G4 prolonged cytopenia associated with infection and pulmonary hemorrhage (death at D82 moimigitusighlon \dagger Viral infections: CMV, ADV, BK virus, metapneumovirus

UCART19: 82\% CR/CRi with FCA Lymphodepletion Regimen

Trial	Patients Enrolled \& Treated	CR/CRi with FCA	CR/CRi with FC only	CR/CR Overall
PALL	7	$\begin{gathered} 100 \% \\ (6 / 6) \end{gathered}$	$\begin{gathered} 0 \% \\ (0 / 1) \end{gathered}$	$\begin{aligned} & 86 \% \\ & (6 / 7) \end{aligned}$
CALM	14	$\begin{gathered} 73 \% \\ (8 / 11) \end{gathered}$	$\begin{gathered} 0 \% \\ (0 / 3) \end{gathered}$	$\begin{gathered} 57 \% \\ (8 / 14) \end{gathered}$
Pooled	21	$\begin{gathered} 82 \% \\ (14 / 17) \end{gathered}$	$\begin{gathered} 0 \% \\ (0 / 4) \end{gathered}$	$\begin{gathered} 67 \% \\ (14 / 21) \end{gathered}$

[^1]- UCART19 expansion observed in $15 / 17$ patients with FCA and $0 / 4$ patients with FC only
- Allogene will use its Proprietary anti-CD52 mAb (ALLO-647) for AlloCAR T ${ }^{\text {TM }}$ Programs

ALLO-715: BCMA AlloCAR $T^{\text {TM }}$ for Multiple Myeloma

ALLO-715 showed activity in vitro against myeloma cell lines and in vivo in xenograft models

- Plan to initiate a Phase 1 clinical trial in 2019
- Expected Phase 1 clinical trial will be an open label, multi-center, dose escalation study in r / r Multiple Myeloma

CD70 for Renal Cell Carcinoma (RCC)

CD70 Expression High in RCC and Low in Normal Tissues
CD70 is the ligand for the co-stimulatory receptor CD27

- Normal CD70 expression is limited to activated lymphocytes and APCs

CD70 expression ${ }^{1}$:

- RCC tumor samples (80-100\%)
- AML (96\%)
- DLBCL (71\%), MM (63\%), CLL (50\%),
- GBM (35\%)

Lead CARs chosen from several Abs targeting different regions of the protein

- Candidates screened to show long-lived activity in low-expressing cell lines similar to disease level expression

> CD70-Low Cell Line Models Match Median Expression in Tumors

DLL3 for Small Cell Lung Cancer (SCLC)

DLL3 reported to have a role in tumorigenesis

- Outside of the developing embryo, minimal to no surface expression in normal tissue
DLL3 expression ${ }^{1}$:
- Small cell lung cancer (80\%)
- Low grade gliomas (90\%) \& GBM (70\%)
- Bladder (57\%) \& Prostate (24\%)
- Testicular cancer (90\%)

Candidate CARs chosen from several Abs targeting different regions of the protein

- Two protein domains identified with superior CAR T activity

Toxicology program ongoing

DLL3 RNA Expression High in Tumor and Normal Tissue

- Investigating toxicity using mouse crossreactive CARs

Engineering a Future for AlloCAR TTM in Solid Tumors

The 2019 Path Forward: Allogene-Sponsored Program Milestones

[^0]: ${ }^{1}$ Phase 3 may not be required if Phase 2 is registrational
 ${ }^{2}$ Servier holds ex-US commercial rights
 ${ }^{3}$ ALLO-647 intended to enable expansion and persistence of allogeneic CAR T product candidates

[^1]: ASH 2018 ; FCA: Fludarabine, cyclophosphamide \& alemtuzumab (anti-CD52 mAb); FC: Fludarabine \& cyclophosphamide

